
Blind SQL Injection
Automation Techniques

Black Hat Briefings USA
2004

Cameron Hotchkies
cameron@0x90.org

What is SQL Injection?

• Client supplied data passed to an
application without appropriate
data validation

• Processed as commands by the
database

Frequently Used To:

• Perform operations on the
database

• Bypass authentication mechanisms
• Read otherwise unavailable

information from the database
• Write information such as new

user accounts to the database

Three Forms of SQL Injection

• There are three main forms of SQL
Injection used to read information
from a database
–Redirection and reshaping a query
–Error message based
–Blind Injection

Blind SQL Injection

• Blind SQL Injection techniques can
include forming queries resulting in
boolean values, and interpreting the
output HTML pages

• SQL Injection can result in significant
data leakage and/or data modification
attacks

• Blind attacks are essentially playing 20
questions with the web server

Why focus on Blind
Injections?

• Blind injections are as common as
any other injection

• Blind holes involve a false sense of
security on the host

• Requires a larger investment of
time to execute manual
penetration against

Benefits of an Automated Tool

• We can ask the server as many yes/no
questions as we want

• Finding the first letter of a username
with a binary search takes 7 requests

• Finding the full username if it’s 8
characters takes 56 requests

• To find the username is 8 characters
takes 6 requests

• 62 requests just to find the username
• This adds up

Benefits Cont’d

• Assuming it takes 10 seconds to
make each request

• Assuming the pentester makes no
mistakes

• The 8 character username takes
over ten minutes

• What if we want the schema or the
entire database?

Benefits Cont’d

• If you want non-trivial penetration
–Table names
–Column names
–Actual Data

• This would take hours or days or
longer depending on the size of
the database

Sound Simple?

An effective tool is more complex than
“a few shell scripts and netcat”

Searching for Integers

• Select a range (usually starting with 0)
• Increase value exponentially by a factor

of two until upper limit is discovered
• Partition halfway between upper limit

and previous value
• Continue to halve sections until one

value remains

Problem

• How do we recognize true vs false pages
from the web server?
– We take pattern recognition for granted
– Can’t we just do a string compare?

• NO!
– The whole point of a web application is to

have dynamic content
– It’s entirely likely that the section indicating

the true/false is not the only dynamic
content

– String comparison is suitable for error
based injection but not blind injection

Solution One: Keyword
Search

• Requires direct intervention of the
user

• User interaction requires effort to
be expended which is what we are
trying to minimize

Solution Two: MD5 Sum

• Web Applications are designed to
be dynamic

• MD5 causes large output changes
from small input changes

Google vs. Hoogle

MD5 Sum Comparison

• MD5 does not handle changes well
• May work on some web

applications, but not
comprehensive

Solution Three: Text
Difference Engine

• Text difference tools are designed
to highlight informational changes
that we are not concerned with.

• A lot of effort is wasted to retain
information that will simply be
discarded.

Solution Four: Parse HTML Tree

• Represent text as html entities in a tree
data structure

• Look for differences in the shape of the
trees

• If only non-markup data is changing,
there will be no way to proceed in
automation

• Easier to implement an xhtml parser
than a realistic html parser

Solution Five: Linear
Representation of ASCII

Sums
small input variation = small output

variation

Signature Comparison

• Generating base cases
– Will need base cases for comparison of

unknowns
– We already know guaranteed true/false

pages
– We have multiple options for known base

cases
• Easiest is 1=1 vs 1=0

http://www.vulnsite.com/catalog.asp?ID=7 AND 1=1
http://www.vulnsite.com/catalog.asp?ID=7 AND 1=0

Sample Signature Set

Realistic Signature Set

Tolerance Band Comparison

• Minor changes in textual content
result in small overall changes in
sum

• Changes still occur
• Allowing for tolerance instead of

exact comparison in sums lessens
false negatives

| Σknown – Σunknown | / Σknown

Tolerance Band Comparison

Shortcomings of Tolerance
Band Comparison

• It works, but there are a lot of
unnecessary comparisons

• Doesn’t take advantage of known
garbage data

Subtractive Filter

• We can identify sums that are equal between
conflicting base cases

Subtractive Filter

• This can be combined with the tolerance band
to eliminate unnecessary comparisons

Adaptive Filter

• Allows the application to be
profiled before testing against
unknowns

• Removes junk data that could
skew results

• Requires multiple base cases

Two “Identical” Samples

“1 = 1” vs “2 = 2”

Adaptive Filter Applied

“1 = 1” vs “2 = 2”

Benefits of Adaptive Filter

• Tolerance is mostly unnecessary at
this point

• Removes most dynamic content
unrelated to the data leakage

SQueaL

• SQueaL was created alongside the
research being presented

• Written in C# for Windows & Linux
– Both Windows.Forms & Gtk-Sharp GUIs

available
• Free for non-commercial use

– Black Hat Conference CDs include a
commercially licensed version (Free for you)

• Exports data to an XML format for nice
presentation to clients/PHBs

SQueaL: Exporting Data

• SQueaL uses it’s own XML format for
saving exploit data

<SQueaLdata version="0.01a">
 <target address="vulnerable.org:8080/test.php" method="GET"

ssl="False">
 <parameter name="prod_id" value="2" injectable="True" />
 </target>

 <attackvector name="prod_id" buffer="2" type="BlindTSQLInjection">
 <truepage>
 <signature-item>3029</signature-item>
 <signature-item>3897</signature-item>
 <signature-item>572</signature-item>
 ...

Gathering Table Info

We start with the ID number for each table:

 ... AND (SELECT COUNT(name) FROM sysobjects WHERE
xtype=char(85)) > search_value

 ... AND (SELECT MIN(id) FROM sysobjects WHERE
id > prev_table_id AND
xtype=char(85)) > search_value

More Table Info

We can now retrieve each table’s
recognizable name

... AND (SELECT TOP 1 LEN(name) FROM sysobjects
WHERE id= table_id AND
xtype=char(85)) > search_value

... AND (SELECT ASCII(SUBSTRING(name,
character_counter ,1)) FROM sysobjects WHERE
id=table_id) > search_value

Gathering Field Information

Once we have the table information, we
can move on to the fields

... AND (SELECT COUNT(name) FROM syscolumns
WHERE id=table_id) > search_value

... AND (SELECT MIN(colid) FROM syscolumns
WHERE colid > prev_colid AND id=table_id)
> search_value

Field Info Cont’d
 ... AND (SELECT TOP 1 LEN(name) FROM sysobjects
WHERE id=table_id AND colid=colid) > search_value

... AND (SELECT ASCII(SUBSTRING(name,
character_counter, 1)) FROM syscolumns WHERE
id=table_id AND colid=colid) > search_value

... AND (SELECT TOP 1 (xtype) FROM syscolumns
WHERE id=table_id AND colid=colid) > search_value

Field Data Types
Gathering field data types is faster, but
requires knowledge the type mapping:

Nchar239NVarChar231

Timestamp189Char175

Binary173VarChar167

VarBinary165BigInt127

SmallMoney122Numeric108

Decimal106Bit104

Ntext99Float62

DateTime61Money60

Real59SmallDateTime58

Int56SmallInt52

TinyInt48UniqueIdentifier36

Text35Image34

*Datatype values taken from MSDE

SQueaL: Running Time

• Sample web application resulted in
over 2700 HTTP requests

• If we use the “10 second” estimate
from earlier, this would have taken
over 7.5 hours non-stop

• A real production database would
be even larger and longer

Shortcomings / Mitigations

• User-Agent
• Noise generation / Server log DoS
• HTML Sums can be poisoned with

random seeds
• Doesn’t “lower the bar” for finding

exploits
• Troubles with no carriage returns /

auto generated HTML

Forced CRLF

• What happens when HTML is
generated without carriage
returns?
–Natural tendency to force carriage

returns
–This will throw off the data

• At this point, an HTML parser
would be needed

Conclusion

• Same techniques can be utilized with queries indicating
invalid SQL
– Treat these as questions such as “Is this syntax

valid?” which in now a yes/no question
• MD5 Bad for these purposes
• Same techniques can be utilized in other applications to

interpret results from HTML responses
– XPath Injection
– LDAP Injection

• Use Parameterized code in an appropriate fashion to
call stored procedures

References & Suggested
Papers

Advanced SQL Injection in SQL Server Applications
[Chris Anley, NGS Systems]
http://www.nextgenss.com/papers/advanced_sql_injection.pdf

(more) Advanced SQL Injection
[Chris Anley, NGS Systems]
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf

Blind SQL Injection: Are your web-apps Vulnerable?
[Kevin Spett, SPI Dynamics]
http://www.spidynamics.com/whitepapers/Blind_SQLInjection.pdf

Questions & Answers

This, and other tools are available
for download at:

http://www.0x90.org/releases/

